glTexImage2D — specify a two-dimensional texture image
void glTexImage2D( | GLenum target, |
GLint level, | |
GLint internalFormat, | |
GLsizei width, | |
GLsizei height, | |
GLint border, | |
GLenum format, | |
GLenum type, | |
const GLvoid * data) ; |
target
Specifies the target texture. Must be GL_TEXTURE_2D
, GL_TEXTURE_CUBE_MAP_POSITIVE_X
, GL_TEXTURE_CUBE_MAP_NEGATIVE_X
, GL_TEXTURE_CUBE_MAP_POSITIVE_Y
, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y
, GL_TEXTURE_CUBE_MAP_POSITIVE_Z
, or GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
.
level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap reduction image.
internalFormat
Specifies the number of color components in the texture. Must be one of base internal formats given in Table 1, or one of the sized internal formats given in Table 2, below.
width
Specifies the width of the texture image. All implementations support texture images that are at least 2048 texels wide.
height
Specifies the height of the texture image. All implementations support texture images that are at least 2048 texels high.
border
This value must be 0.
format
Specifies the format of the pixel data. The following symbolic values are accepted: GL_RED
, GL_RED_INTEGER
, GL_RG
, GL_RG_INTEGER
, GL_RGB
, GL_RGB_INTEGER
, GL_RGBA
, GL_RGBA_INTEGER
, GL_DEPTH_COMPONENT
, GL_DEPTH_STENCIL
, GL_LUMINANCE_ALPHA
, GL_LUMINANCE
, and GL_ALPHA
.
type
Specifies the data type of the pixel data. The following symbolic values are accepted: GL_UNSIGNED_BYTE
, GL_BYTE
, GL_UNSIGNED_SHORT
, GL_SHORT
, GL_UNSIGNED_INT
, GL_INT
, GL_HALF_FLOAT
, GL_FLOAT
, GL_UNSIGNED_SHORT_5_6_5
, GL_UNSIGNED_SHORT_4_4_4_4
, GL_UNSIGNED_SHORT_5_5_5_1
, GL_UNSIGNED_INT_2_10_10_10_REV
, GL_UNSIGNED_INT_10F_11F_11F_REV
, GL_UNSIGNED_INT_5_9_9_9_REV
, GL_UNSIGNED_INT_24_8
, and GL_FLOAT_32_UNSIGNED_INT_24_8_REV
.
data
Specifies a pointer to the image data in memory.
Texturing allows elements of an image array to be read by shaders.
To define texture images, call glTexImage2D
. The arguments describe the parameters of the texture image, such as height, width, width of the border, level-of-detail number (see glTexParameter), and number of color components provided. The last three arguments describe how the image is represented in memory.
If target
is GL_TEXTURE_2D
or one of the GL_TEXTURE_CUBE_MAP
targets, data is read from data
as a sequence of signed or unsigned bytes, shorts, or longs, or single-precision floating-point values, depending on type
. These values are grouped into sets of one, two, three, or four values, depending on format
, to form elements.
If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER
target (see glBindBuffer) while a texture image is specified, data
is treated as a byte offset into the buffer object's data store.
The first element corresponds to the lower left corner of the texture image. Subsequent elements progress left-to-right through the remaining texels in the lowest row of the texture image, and then in successively higher rows of the texture image. The final element corresponds to the upper right corner of the texture image.
format
determines the composition of each element in data
. It can assume one of these symbolic values:
GL_RED
Each element is a single red component. For fixed point normalized components, the GL converts it to floating point, clamps to the range [0,1], and assembles it into an RGBA element by attaching 0.0 for green and blue, and 1.0 for alpha.
GL_RED_INTEGER
Each element is a single red component. The GL performs assembles it into an RGBA element by attaching 0 for green and blue, and 1 for alpha.
GL_RG
Each element is a red/green double. For fixed point normalized components, the GL converts each component to floating point, clamps to the range [0,1], and assembles them into an RGBA element by attaching 0.0 for blue, and 1.0 for alpha.
GL_RG
Each element is a red/green double. The GL assembles them into an RGBA element by attaching 0 for blue, and 1 for alpha.
GL_RGB
Each element is an RGB triple. For fixed point normalized components, the GL converts each component to floating point, clamps to the range [0,1], and assembles them into an RGBA element by attaching 1.0 for alpha.
GL_RGB_INTEGER
Each element is an RGB triple. The GL assembles them into an RGBA element by attaching 1 for alpha.
GL_RGBA
Each element contains all four components. For fixed point normalized components, the GL converts each component to floating point and clamps them to the range [0,1].
GL_RGBA_INTEGER
Each element contains all four components.
GL_DEPTH_COMPONENT
Each element is a single depth value. The GL converts it to floating point, and clamps to the range [0,1].
GL_DEPTH_STENCIL
Each element is a pair of depth and stencil values. The depth component of the pair is interpreted as in GL_DEPTH_COMPONENT
. The stencil component is interpreted based on specified the depth + stencil internal format.
GL_LUMINANCE_ALPHA
Each element is an luminance/alpha double. The GL converts each component to floating point, clamps to the range [0,1], and assembles them into an RGBA element by placing the luminance value in the red, green and blue channels.
GL_LUMINANCE
Each element is a single luminance component. The GL converts it to floating point, clamps to the range [0,1], and assembles it into an RGBA element by placing the luminance value in the red, green and blue channels, and attaching 1.0 to the alpha channel.
GL_ALPHA
Each element is a single alpha component. The GL converts it to floating point, clamps to the range [0,1], and assembles it into an RGBA element by placing attaching 0.0 to the red, green and blue channels.
If an application wants to store the texture at a certain resolution or in a certain format, it can request the resolution and format with internalFormat
. The GL will choose an internal representation with least the internal component sizes, and exactly the component types shown for that format, although it may not match exactly.
internalFormat
may be one of the unsized (base) internal formats shown, together with valid format
and type
combinations, in Table 1, below
Unsized Internal Format | Format | Type | RGBA and Luminance Values | Internal Components |
---|---|---|---|---|
GL_RGB | GL_RGB | GL_UNSIGNED_BYTE , GL_UNSIGNED_SHORT_5_6_5 | Red, Green, Blue | R, G, B |
GL_RGBA | GL_RGBA | GL_UNSIGNED_BYTE , GL_UNSIGNED_SHORT_4_4_4_4 , GL_UNSIGNED_SHORT_5_5_5_1 | Red, Green, Blue, Alpha | R, G, B, A |
GL_LUMINANCE_ALPHA | GL_LUMINANCE_ALPHA | GL_UNSIGNED_BYTE | Luminance, Alpha | L, A |
GL_LUMINANCE | GL_LUMINANCE | GL_UNSIGNED_BYTE | Luminance | L |
GL_ALPHA | GL_ALPHA | GL_UNSIGNED_BYTE | Alpha | A |
internalFormat
may also be one of the sized internal formats shown, together with valid format
and type
combinations, in Table 2, below
Sized Internal Format | Format | Type | Red Bits | Green Bits | Blue Bits | Alpha Bits | Shared Bits | Color renderable | Texture filterable |
---|---|---|---|---|---|---|---|---|---|
GL_R8 | GL_RED | GL_UNSIGNED_BYTE | 8 | Y | Y | ||||
GL_R8_SNORM | GL_RED | GL_BYTE | s8 | Y | |||||
GL_R16F | GL_RED | GL_HALF_FLOAT ,GL_FLOAT | f16 | Y | |||||
GL_R32F | GL_RED | GL_FLOAT | f32 | ||||||
GL_R8UI | GL_RED_INTEGER | GL_UNSIGNED_BYTE | ui8 | Y | |||||
GL_R8I | GL_RED_INTEGER | GL_BYTE | i8 | Y | |||||
GL_R16UI | GL_RED_INTEGER | GL_UNSIGNED_SHORT | ui16 | Y | |||||
GL_R16I | GL_RED_INTEGER | GL_SHORT | i16 | Y | |||||
GL_R32UI | GL_RED_INTEGER | GL_UNSIGNED_INT | ui32 | Y | |||||
GL_R32I | GL_RED_INTEGER | GL_INT | i32 | Y | |||||
GL_RG8 | GL_RG | GL_UNSIGNED_BYTE | 8 | 8 | Y | Y | |||
GL_RG8_SNORM | GL_RG | GL_BYTE | s8 | s8 | Y | ||||
GL_RG16F | GL_RG | GL_HALF_FLOAT ,GL_FLOAT | f16 | f16 | Y | ||||
GL_RG32F | GL_RG | GL_FLOAT | f32 | f32 | |||||
GL_RG8UI | GL_RG_INTEGER | GL_UNSIGNED_BYTE | ui8 | ui8 | Y | ||||
GL_RG8I | GL_RG_INTEGER | GL_BYTE | i8 | i8 | Y | ||||
GL_RG16UI | GL_RG_INTEGER | GL_UNSIGNED_SHORT | ui16 | ui16 | Y | ||||
GL_RG16I | GL_RG_INTEGER | GL_SHORT | i16 | i16 | Y | ||||
GL_RG32UI | GL_RG_INTEGER | GL_UNSIGNED_INT | ui32 | ui32 | Y | ||||
GL_RG32I | GL_RG_INTEGER | GL_INT | i32 | i32 | Y | ||||
GL_RGB8 | GL_RGB | GL_UNSIGNED_BYTE | 8 | 8 | 8 | Y | Y | ||
GL_SRGB8 | GL_RGB | GL_UNSIGNED_BYTE | 8 | 8 | 8 | Y | |||
GL_RGB565 | GL_RGB | GL_UNSIGNED_BYTE , GL_UNSIGNED_SHORT_5_6_5 | 5 | 6 | 5 | Y | Y | ||
GL_RGB8_SNORM | GL_RGB | GL_BYTE | s8 | s8 | s8 | Y | |||
GL_R11F_G11F_B10F | GL_RGB | GL_UNSIGNED_INT_10F_11F_11F_REV , GL_HALF_FLOAT , GL_FLOAT | f11 | f11 | f10 | Y | |||
GL_RGB9_E5 | GL_RGB | GL_UNSIGNED_INT_5_9_9_9_REV , GL_HALF_FLOAT , GL_FLOAT | 9 | 9 | 9 | 5 | Y | ||
GL_RGB16F | GL_RGB | GL_HALF_FLOAT , GL_FLOAT | f16 | f16 | f16 | Y | |||
GL_RGB32F | GL_RGB | GL_FLOAT | f32 | f32 | f32 | ||||
GL_RGB8UI | GL_RGB_INTEGER | GL_UNSIGNED_BYTE | ui8 | ui8 | ui8 | ||||
GL_RGB8I | GL_RGB_INTEGER | GL_BYTE | i8 | i8 | i8 | ||||
GL_RGB16UI | GL_RGB_INTEGER | GL_UNSIGNED_SHORT | ui16 | ui16 | ui16 | ||||
GL_RGB16I | GL_RGB_INTEGER | GL_SHORT | i16 | i16 | i16 | ||||
GL_RGB32UI | GL_RGB_INTEGER | GL_UNSIGNED_INT | ui32 | ui32 | ui32 | ||||
GL_RGB32I | GL_RGB_INTEGER | GL_INT | i32 | i32 | i32 | ||||
GL_RGBA8 | GL_RGBA | GL_UNSIGNED_BYTE | 8 | 8 | 8 | 8 | Y | Y | |
GL_SRGB8_ALPHA8 | GL_RGBA | GL_UNSIGNED_BYTE | 8 | 8 | 8 | 8 | Y | Y | |
GL_RGBA8_SNORM | GL_RGBA | GL_BYTE | s8 | s8 | s8 | s8 | Y | ||
GL_RGB5_A1 | GL_RGBA | GL_UNSIGNED_BYTE , GL_UNSIGNED_SHORT_5_5_5_1 , GL_UNSIGNED_INT_2_10_10_10_REV | 5 | 5 | 5 | 1 | Y | Y | |
GL_RGBA4 | GL_RGBA | GL_UNSIGNED_BYTE , GL_UNSIGNED_SHORT_4_4_4_4 | 4 | 4 | 4 | 4 | Y | Y | |
GL_RGB10_A2 | GL_RGBA | GL_UNSIGNED_INT_2_10_10_10_REV | 10 | 10 | 10 | 2 | Y | Y | |
GL_RGBA16F | GL_RGBA | GL_HALF_FLOAT , GL_FLOAT | f16 | f16 | f16 | f16 | Y | ||
GL_RGBA32F | GL_RGBA | GL_FLOAT | f32 | f32 | f32 | f32 | |||
GL_RGBA8UI | GL_RGBA_INTEGER | GL_UNSIGNED_BYTE | ui8 | ui8 | ui8 | ui8 | Y | ||
GL_RGBA8I | GL_RGBA_INTEGER | GL_BYTE | i8 | i8 | i8 | i8 | Y | ||
GL_RGB10_A2UI | GL_RGBA_INTEGER | GL_UNSIGNED_INT_2_10_10_10_REV | ui10 | ui10 | ui10 | ui2 | Y | ||
GL_RGBA16UI | GL_RGBA_INTEGER | GL_UNSIGNED_SHORT | ui16 | ui16 | ui16 | ui16 | Y | ||
GL_RGBA16I | GL_RGBA_INTEGER | GL_SHORT | i16 | i16 | i16 | i16 | Y | ||
GL_RGBA32I | GL_RGBA_INTEGER | GL_INT | i32 | i32 | i32 | i32 | Y | ||
GL_RGBA32UI | GL_RGBA_INTEGER | GL_UNSIGNED_INT | ui32 | ui32 | ui32 | ui32 | Y |
Sized Internal Format | Format | Type | Depth Bits | Stencil Bits |
---|---|---|---|---|
GL_DEPTH_COMPONENT16 | GL_DEPTH_COMPONENT | GL_UNSIGNED_SHORT , GL_UNSIGNED_INT | 16 | |
GL_DEPTH_COMPONENT24 | GL_DEPTH_COMPONENT | GL_UNSIGNED_INT | 24 | |
GL_DEPTH_COMPONENT32F | GL_DEPTH_COMPONENT | GL_FLOAT | f32 | |
GL_DEPTH24_STENCIL8 | GL_DEPTH_STENCIL | GL_UNSIGNED_INT_24_8 | 24 | 8 |
GL_DEPTH32F_STENCIL8 | GL_DEPTH_STENCIL | GL_FLOAT_32_UNSIGNED_INT_24_8_REV | f32 | 8 |
If the internalFormat
parameter is GL_SRGB8
, or GL_SRGB8_ALPHA8
, the texture is treated as if the red, green, or blue components are encoded in the sRGB color space. Any alpha component is left unchanged. The conversion from the sRGB encoded component to a linear component is:
Assume is the sRGB component in the range [0,1].
A one-component texture image uses only the red component of the RGBA color extracted from data
. A two-component image uses the R and G values. A three-component image uses the R, G, and B values. A four-component image uses all of the RGBA components.
Image-based shadowing can be enabled by comparing texture r coordinates to depth texture values to generate a boolean result. See glTexParameter for details on texture comparison.
The glPixelStorei mode affects texture images.
data
may be a null pointer. In this case, texture memory is allocated to accommodate a texture of width width
and height height
. You can then download subtextures to initialize this texture memory. The image is undefined if the user tries to apply an uninitialized portion of the texture image to a primitive.
glTexImage2D
specifies the two-dimensional texture for the texture object bound to the current texture unit, specified with glActiveTexture.
GL_INVALID_ENUM
is generated if target
is not GL_TEXTURE_2D
, GL_TEXTURE_CUBE_MAP_POSITIVE_X
, GL_TEXTURE_CUBE_MAP_NEGATIVE_X
, GL_TEXTURE_CUBE_MAP_POSITIVE_Y
, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y
, GL_TEXTURE_CUBE_MAP_POSITIVE_Z
, or GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
.
GL_INVALID_ENUM
is generated if target
is one of the six cube map 2D image targets and the width and height parameters are not equal.
GL_INVALID_ENUM
is generated if type
is not a type constant.
GL_INVALID_VALUE
is generated if width
is less than 0 or greater than GL_MAX_TEXTURE_SIZE
.
GL_INVALID_VALUE
is generated if level
is less than 0.
GL_INVALID_VALUE
may be generated if level
is greater than , where max is the returned value of GL_MAX_TEXTURE_SIZE
.
GL_INVALID_VALUE
is generated if internalFormat
is not one of the accepted resolution and format symbolic constants.
GL_INVALID_VALUE
is generated if width
or height
is less than 0 or greater than GL_MAX_TEXTURE_SIZE
.
GL_INVALID_VALUE
is generated if border
is not 0.
GL_INVALID_OPERATION
is generated if the combination of internalFormat
, format
and type
is not one of those in the tables above.
GL_INVALID_OPERATION
is generated if storage for the texture has been previously specified with glTexStorage2D.
GL_INVALID_OPERATION
is generated if a non-zero buffer object name is bound to the GL_PIXEL_UNPACK_BUFFER
target and the buffer object's data store is currently mapped.
GL_INVALID_OPERATION
is generated if a non-zero buffer object name is bound to the GL_PIXEL_UNPACK_BUFFER
target and the data would be unpacked from the buffer object such that the memory reads required would exceed the data store size.
GL_INVALID_OPERATION
is generated if a non-zero buffer object name is bound to the GL_PIXEL_UNPACK_BUFFER
target and data
is not evenly divisible into the number of bytes needed to store in memory a datum indicated by type
.
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING
// fbo_width and fbo_height are the desired width and height of the FBO. // For Opengl <= 4.4 or if the GL_ARB_texture_non_power_of_two extension // is present, fbo_width and fbo_height can be values other than 2^n for // some integer n. // Build the texture that will serve as the color attachment for the framebuffer. GLuint texture_map; glGenTextures(1, &texture_map); glBindTexture(GL_TEXTURE_2D, texture_map); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, fbo_width, fbo_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_2D, 0); // Build the texture that will serve as the depth attachment for the framebuffer. GLuint depth_texture; glGenTextures(1, &depth_texture); glBindTexture(GL_TEXTURE_2D, depth_texture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, fbo_width, fbo_height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_2D, 0); // Build the framebuffer. GLuint framebuffer; glGenFramebuffers(1, &framebuffer); glBindFramebuffer(GL_FRAMEBUFFER, (GLuint)framebuffer); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture_map, 0); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth_texture, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) // Error glBindFramebuffer(GL_FRAMEBUFFER, 0);
GLuint texture_id; glGenTextures(1, &texture_id); glBindTexture(GL_TEXTURE_2D, texture_id); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); // texture_data is the source data of your texture, in this case // its size is sizeof(unsigned char) * texture_width * texture_height * 4 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, texture_width, texture_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, texture_data); glGenerateMipmap(GL_TEXTURE_2D); // Unavailable in OpenGL 2.1, use gluBuild2DMipmaps() instead glBindTexture(GL_TEXTURE_2D, 0);
Songho - OpenGL Frame Buffer Object (FBO)
open.gl - Framebuffers
open.gl - Textures Objects and Parameters
opengl-tutorial.org - Tutorial 14 : Render To Texture
opengl-tutorial.org - Tutorial 16 : Shadow mapping
opengl-tutorial.org - Tutorial 5 : A Textured Cube
OpenGL ES API Version | |||
---|---|---|---|
Function Name | 2.0 | 3.0 | 3.1 |
glTexImage2D | ✔ | ✔ | ✔ |
glActiveTexture, glCopyTexImage2D, glCopyTexSubImage2D, glCopyTexSubImage3D, glPixelStorei, glTexImage3D, glTexStorage2D, glTexStorage3D, glTexSubImage2D, glTexSubImage3D, glTexParameter
Copyright © 1991-2006 Silicon Graphics, Inc. Copyright © 2010-2014 Khronos Group. This document is licensed under the SGI Free Software B License. For details, see https://web.archive.org/web/20171022161616/http://oss.sgi.com/projects/FreeB/.